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Abstract: This paper shows the various parallel mining algorithms for frequent itemsets mining. We summarize the 
various algorithms that were developed for the frequent itemsets mining, like candidate key generation algorithm, such 

as Apriori algorithm and without candidate key generation algorithm, such as FP-growth algorithm. These algorithms 

lacks mechanisms like load balancing, data distribution I/O overhead, and fault tolerance. The most efficient the recent 

method is the FiDoop using ultrametric tree (FIUT) and Mapreduce programming model. FIUT scans the database only 

twice. FIUT has four advantages. First: I reduces the I/O overhead as it scans the database only twice. Second: only 

frequent itemsets in each transaction are inserted as nodes for compressed storage. Third: FIU is improved way to 

partition database, which significantly reduces the search space. Fourth: frequent itemsets are generated by checking 

only leaves of tree rather than traversing entire tree, which reduces the computing time. 
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I.INTRODUCTION 
 

Data mining is a process of discovering the pattern from 
the huge amount of data. There are many data mining 

technics like clustering, classification and association 

rule. The most popular one is the association rule that is 

divided into two parts i) generating the frequent itemset 

ii) generating association rule from all itemsets. 
 

Frequent itemset mining (FIM) is the core problem in the 

association rue mining. Sequential FIM algorithm suffers 

from performance deterioration when it operated on huge 

amount of data on a single machine.to address this 

problem parallel FIM algorithms were proposed. 
 

There are two types of algorithms that can be used for 

mining the frequent itemsets first method is the candidate 

itemset generation approach and without candidate 

itemset generation algorithm. The example for candidate 

itemset generation approach is the Apriori algorithm and 

for, without candidate itemsets generation is the FP-

growth algorithm. 
 

The important data-mining problem is discovering the 

association rule between the frequent itemset.in order to 

find best method for mining in parallel, we explore a 

spectrum for trade-off between computation, 
synchronization, communication, memory usage. Count 

distribution, data distribution, candidate distribution are 

three algorithms for discovering the associate rule 

between frequent itemsets. 
 

Minimizing communication is the focus of the count 

distribution algorithm.it will thus even at the expense of 

winding up redundant duplication computation in 

parallel. 
 

The data distribution effectively utilizes the main 

memory of the system.it is communication-happy 

algorithm. Here nodes to all other nodes broadcast the 
local data. 

 

 
The candidate distribution algorithm for both, to segment 

the database upon the different transaction support and the 

patterns, exploits linguistics of a particular problem. Load 
balancing is also incorporated by this algorithm.[1] 

 

II.  RELATED WORK 
 

Sandy moen’s at al,[2] proposed two new method for 

mining frequent itemset in parallel on the Mapreduce 
framework 
 

First method is the Dist-Eclat. This method distributes the 
search space evenly as possible among mapper. This 

technique mines large dataset but not massive datasets. This 

algorithm operates in three steps: 
 

We use vertical database rather than transaction database.in 

the first step the vertical database is divided into equal sized 

blocks called shards and distributed to available mappers. 

Each mapper extracts the frequent singletons from each 

block and gives to the reducer. The reducer collects all the 

frequent tested. In the second step the set of frequent 

itemsets of size K ae generated (Pk). Frequent singleton 

itemsets are distributed to the mappers. Each mapper runs 

Éclat [3] to find frequent K-sized superset of items. The 

reducer collects all the frequent K-sized supersets of items 
and distributes it to the next batch of mappers. Round Robin 

is used for the distribution of the frequent itemset. The third 

step is the mining the prefix tree. The mutual information 

between the mappers are independent, so mapper complete 

each step independently. 
 

Demerit: 
 

This method returns a very large number of sets so this 

method is prohibited on Hadoop 
 

Second method is the BigFIM over the problem of Dist-

Eclat. There are 3 steps in this method 
 

In the first K-FI’s are generated using breath-first method. 
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Every mapper takes the database and gives itemsets for 

which, we want to know the support .the reducer takes all 

itemsets and returns only the global frequent itemsets. 

These itemsets are considered as candidates and 

distributed to the mappers for breath-first search. This 

process continues K-times to generate K-FI’s.next step is 
computing the possible extension.  
 

The mapper gives local Tid-list to the reducer the reducer 
combines the local Tid-lists, to one Tid-list, and assigns 

prefix to mappers. The mapper in the final step works on 

individual prefix group. A prefix group fits in the 

memory as a conditional database. The diffsets are used 

to mine the frequent itemsets in the conditional database. 
 

Enhilvathani et al [4] have used the Apriori algorithm for 

frequent item set generation on mapreduce programing 

model. For implementation of algorithm is given in five 

steps 
 

In the first step the transaction dataset is partitioned that 

is Divided into n subsets done that are of map phase.in 

the second step the data subsets are formatted as <key1, 

value1>pair, key is Tid(Transaction id). 
 

The mapreduce task is executed in third phase. The 

record of input item subsets are scanned by the Map 

function and candidate item sets input are generated by 

the map function 
 

In the fourth step the output of the map function 

combined by combiner function in the local and it 
outputs <itemset, support count>, the intermediate pair 

generated by combiner function is divided by partition 

function in to “r” different partitions. Finally reduce 

function executes the reduce task, the key item set are 

sorted. In the supported count of the same candidates is 

added by reduce function to get the actual support count 

of the candidate in the transaction database. Compare 

with the minimum support count to gets the frequent item 

set Lp. 
 

Demerit 
 

Apriori algorithm has to scan the entire database 

repeatedly. 
 

Suraj Ghadge et al [5] gives the overview of FP-Growth 

algorithm. The idea is to build one FP- tree, and divide 

into many parts and distribute them to different threads. 
 

The FP-algorithm is divided into two parts: 
 

1) Building FP-tree 
 

Given minimum support and transaction database, the 

database is scanned once. All frequent itemsets(F) along 

with the itemset support is collected , the F is sorted in 

support-desenting order as FList(frequent itemset list0. 
 

The root of FP-tree is labelled “null”, for each of 

transaction in database do the following. 
 

2 ) mining from FP-tree 
 

Iterative procedure: set of conditional pattern base is 

produced in each step and calculated together Procedure 

FP Growth (Tree, α) 

Algorithm: 
 

Begin 
 

/*Mining single prefix−path FP−tree */ if Tree contains a 

single prefix path then Begin 
 

Let P be the single prefix−path part of Tree; 
 

Let Q be the multipath part with the top branching node 

Replaced by a null root; 
 

For each combination (denoted as β) of the nodes in the 

path P do 
 

Generate pattern βUα with support = minimum support of 

Nodes in β; 
 

Let freq pattern set(P) be the set of patterns so generated; 

End 
 

Else let Q be Tree; 
 

/* Mining multipath FP−tree */ 
 

For each item ai in Q do Begin 
 

Generate pattern β = aiUα with support = ai.support; 

Construct β’s conditional pattern−base and then β’s 

Conditional FP−tree Tree β; 
 

If Tree β = φ(13) then call FP−growth(Tree β, β); 
 

Let freq pattern set(Q) be the set of patterns so generated; 

End 
 

Return (freq pattern set(P)Ufreq pattern set(Q)U(freq 

Pattern set(P)× frequent pattern set 
 

Demerits: 
 

It still consumes large amount of time to operate on large 

data 
 

Yaling Xun et al, [6] proposed an ultrametric tree for 

mining frequent iteam set ultrametric provides four 
advantages ones FP and Apriori like partitioning a database 

in a minimizing input output and compressed storage. 

FiDoop is algorithm designed to overcome the problems 

like load balancing, fault tolerance, automatic 

parallelization and distribution on large cluster. 
 

Comparing with ultrametric tree algorithm FiDoop has 

many other features. In FiDoop the concurrently and 

independently decomposes itemsets small ultrametric tree is 

constructed by the reduces to perform combination 

operation as Well as mining these trees in parallel.  
 

The FIUT algorithm consist of two phases. Two round of 

scanning is done in the first phase. 
 

In the first phase support of all item set are computed and 

frequent item set are generated. In second scan infrequent 

item set are pruned in each transaction record, resulting in 

k-item set [ K_ number of frequent items ]. In phase two n 

item set are decomposed in to K-FIU tree, where 

K+1<=n<=M (M is the maximal value of K), and unioning 

original K-item sets. Mining of are frequent k item sets 

based on the leaves of K-FIUtree is done in the second 

phase without traversing the tree. The computing time is 
reduced in FIUT. 
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There are three steps in FiDoop 
 

In transaction database stored in HDFC in the form of 

multiple input files in the form of < Long writable offset, 

Text record >, the frequency of items is computed by the 

mapper and mapper generates local one item set the local 

one item set from different mapper are sorted and merged 

given to reducer as global one item set the minsupport is 

applied to prune infrequent item set .The output from 

first map reduce is stored in the form of < Text item, long 

writable count >, stored in file named F-file this is given 
as input to the second mapreduce job FiDoop. 
 

One item set from the first mapreduce job is given to the 
second mapreduce; second round of scan is applied to 

prune infrequent item set. The mapper returns a pair < 

Array Writable item sets, Long Writable One >, as on 

output that is shuffled and combined for the second job’s 

reducer. After combination, reducer gives key value pair. 

The output of second mapreduce is < In Writable item 

number, Map Writable < Array Writable k-item, Long 

Writable Sum >>. 
 

The third mapreduce is imported and expensive phase it 

is dedicated to 1) K-FIU tree construction 2) item set 

decomposition 3) frequent item set mining. The K-item 

sets given by the second mapreduce is decomposed into a 

list of small –sized sets by the mapper, this 
decomposition result is merged to construct FIU tree. The 

decomposition process is performed in parallel on each 

mapper. The map function returns <key, value> pair key 

is number of items value is FIU tree. Contains leaf and 

non-leaf node includes node –link and item name leaf 

node includes support and item name by their single 

reducer can be given item set with same number of items. 

Constructing K2-FIU and mining all frequent item sets 

without traversing the tree is done by the reducer 

 

III. CONCLUSION 
 

Mapreduce programming model is applied for existing 

parallel mining algorithm for mining frequent itemsets 

from database and solves the load balancing and 

scalability. 
 

This paper gives the overview of algorithms designed for 

parallel mining of frequent itemsets .The Apriori and FP 

tree algorithm were used for mining frequent itemsets. 
Main drawback of Apriori algorithm is that the database 

has to be scanned many number of times and huge 

candidate keys needs to be exchanged between the 

processor. I/O and synchronization are the other 

problems in the Apriori algorithm. 
 

The disadvantage of FP-growth, however, lies within the 

impracticableness to construct in-memory FP trees to 

accommodate large-scale databases. This drawback 

becomes a lot of pronounced once it comes to huge and 

two-dimensional databases. 
 

To overcome these problems, FiDoop, an parallel 

frequent itemset mining algorithm is developed. FiDoop 

incorporates the ultrametric tree (FIU) rather than Apriori 

or FP-growth algorithm. The FIU tree achieves 

compressed storage. FiDoop runs three MapReduce jobs. 

The third MapReduce job is important. in third job the 

mapper independently decomposes itemsets and reducer 

built the ultrametric trees. 
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